New DMX3

Efficient protection
 Now from 1600 A
 up to 6300 A

FOLLOW US

ALSO ON

f. Legrand Myanmar

4 legrand
Legrand (S) Pte Ltd Myanmar Branch Room No (304), Level-2, Building (15), Myanmar ICT Park, Hlaing Universities
Campus, Haing Township, Yangon, Myanmar Campus, Hlaing
Ph: $01-230$
5240

AIR CIRCUIT BREAKERS I PRODUCT GUIDE

4 legrand $^{\circ}$

NEW DMX ${ }^{3}$ ACBs
UP TO 6300 A
EFFICIENT PROTECTION
AND CONTROL FOR ALL TYPE OF BUILDINGS

Optimized performance up to 6300 A

| DMX ${ }^{3}$ air circuit breakers and DMX 3 - 1 isolating switches are availabl in four frame sizes. Three breaking capacities for circuit breakers: 50 kA for the DMX ${ }^{3}-\mathrm{N}$ designation 65 kA for $\mathrm{DMX}^{3}-\mathrm{H}$ and 100 kA for DMX3-L I The range covers 11 rated currents, between 630 A and 6300 A
| All range of $D M X^{3}$ air circuit breakers and $D X^{3}-\mid$ isolating switches is available in fixed and draw-out version.

(1) For trip-free switches, please consult us
$+$
Legrand advantage
The overal dimensions of the breaker contribute considerably to an efficient use of the space inside
the electrical panel. The constant depth for all the rated currents facilitates connection of the busbars

OTHER ELECTRICAL FEATURES

$\begin{array}{ll}\text { Rated operational voltage Ue: } 690 \mathrm{Vac} 50 / 60 \mathrm{~Hz} & \text { Ambient temperature: }-5^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \text { Rated insulation voltage Ui: } 1000 \mathrm{Vac} 50 / 60 \mathrm{~Hz} & \text { Humidity: }+55^{\circ} \mathrm{C} \text { with relative humidity of } 95 \% \text {, }\end{array}$ conforms to IEC 68-2-30 conforms to IEC 68-2-30

MP4 LSI ELECTRONIC PROTECTION UNIT CAT．N｀028165／028001

MP4 LSIg ELECTRONIC PROTECTION UNIT CAT．N｀028166／028002

	7
	1匈可區
	$\because \cdot$
	$\therefore \because$
	．

The following settings are adjusted

using rotary selector switches
－Long time delay protection against overloads：Ir
－Short time delay protection
－Short time delay protection operation time： tm
$\therefore \therefore \quad \therefore$
－Instantaneous protection against very high short circuits：
－Earth fault current：Ig
－Time delay on earth fault tripping：tg
－Neutral protection：IN

Precise \＆user friendly LCD tripping units

Besides their easy mounting and connection，strength and good
continuity of operation， 3 types of electronic units allow precise adjustment of different limits for current values and time delay．The result is an efficient protection against electrical faults while maintaining total discrimination with downstream breakers．
The LCD display lets you monitor the measured current values and informs you on fault adjustement and log（the cause of last trip and maintenance operations）．
＋Legrand advantage
All protection units are equipped with batteries so you can monitor the parameters even when the breaker is not connected

INFORMATION

All DMX3 breakers are factory equipped with any MP4 protection unit LI，LSI or LSIg according to your requirements．You just need to select and indicate the 2 catalogue numbers when placing the order（ 1 for the breaker and 1 for the tripping unit）

Tripping curve

preview

MP6 LSIG TOUCH SCREEN PROTECTION UNIT CAT.NO 28804

The following settings are adjusted using the tou

- Long time delay protection against overloads: Ir
- Long delay protection operation time: $\mathbf{t r}$
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: li
- Earth fault current: I
- Neutral pron earth fault tripping: tg

Earth fault tripping curve preview

Innovative \& user friendly touch screen tripping units

MP6 electronic protection units are equipped with a colour touch screen, particularly user friendly, thanks to intuitive icon-based navigation system. The colour display provides a clear presentation of the parameters of the installation.
| Touch screen protection units integrate all the functions of LCD tripping units and have an advanced measurement function which, in addition to monitoring currents, can also be used to display voltages, active and reactive powers, frequency, power factor, and also energy. Alarms can be programmed on a number of these parameters: max. voltage, min. voltage, voltage imbalance, max. and min. frequency, etc.

LEGRAND ADVANTAGE

The icon-based interface of the management software and the innovative touch screen technology
used for MP6 tripping units simplify setting and preparing operations of the DMX3 circuit breaker.

INFORMATION

The MP4 and MP6 electronic protection units can communicate via an RS-485 por
This port is used for remote monitoring and management of the devices in the installation, using the MODBUS protocol. It is therefore possible to control circuit breaker opening and closing, display the electrical parameters and detect all the alarms generated by each device, from a PC.

STARTING MENU

ulegand

\qquad his menu displays the values of $I_{1} I_{2}, I_{3}$ and I_{N} as a diagram, the date and the hour, and the alarm icon.
If the breaker opens following an electrical fault a specific icon will appear on the upper part of the screen.
Pressing this icon will open a new window showing the cause of the last event. Other possible actions
ess the main menu

- Alarm icon: preview the cause of the alarm in course

Vertical arrows allow scrolling between different electrical parameters it, $\mathrm{mm}, \mathrm{tm}, \mathrm{Ir}, \mathrm{tr}, \mathrm{lg}$, tg, etc.
Pressing horizontal icons gives access to corresponding windows allowing value
settings. Each value can be increased/ settings. Each value can be increased/
decreased, validated or suppressed. The values need to be saved into memory at the end of the process, for each setting

MAIN MENU

The main menu allows accessing different windows for setting different parameters of the breaker or previewing measured values, battery status, tripping history, etc.
The following accesses are possible
1 Setting according to the tripping curves (current and time)
2 Access tripping unit settings (luminosity, contrast and sound volume)
3 Access to general information of the breaker
4 Back to the previous page
6 Access archives
1 Preview battery charging status

Innovative \& user friendly touch screen tripping units (continued)

| MP6 electronic protection units collect all the useful information in 5 sections, each one easily reachable via the main menu in order to allow an efficient control. Navigation through these sections is very simple thanks to the arrows at the bottom of each page I MP6 electronic protection units have an intuitive graphical interface. All useful information and selected settings are easy to understand and visible at a glance. For example current values can be visualized on the starting page thanks to a histogram. Different other settings can be simultaneously displayed on the "settings" screen in order to have a global view.

MEASURED VALUES MENU

If:	1800 A
I_{2}	1200 A
18	1500 A
Int	1500 A

This window allows previewing of measured values for:

- Currents
- Voltages (Ph / N and $\mathrm{Ph} / \mathrm{Ph}$) - Active and reactive powers - Active and reactive energy - Harmonics / for currents and voltages) Pressing I, m, M and avg icons at the bottom of the window will display respectively instantaneous, minum, maximum and average value of electrical parameters.

All control accessories can be easily installed without any special tool and in a very short time. The installation is to be done on the front panel of the air circuit breaker. In that way, the separation between power and control circuits is guaranteed.

SHUNT TRIP		
	Shunt trips are devices used for the remote instantaneous opening of the air circuit breaker. They are generally controlled trough an N/O type contact. The actual offer of shunt trips proposes different supply voltages (from 24 V to 415 V), compatibles with AC and DC currents. The shunt trips are already equipped with a special fast connector, to be directly inserted into auxiliary contacts block. An auxiliary contact is connected in series with the coil, cutting off its power supply when the main poles are open.	Technical characteristics: - Nominal voltage Un: $24 \mathrm{~V} \sim$ to $480 \mathrm{~V} \sim$ and from $24 \mathrm{~V}=$ to $250 \mathrm{~V}=$ - Tolerance on nominal voltage: 70 to 110% Vn - Maximum power consumption (max. power for 180 ms): $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$ - Continuous power: $5 \mathrm{VA} \sim / 5 \mathrm{~W}=$ - Maximum opening time: 30 ms - Insulation voltage: 2500 V 50 Hz for 1 min - Endurance on pulse: surge proof $4 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$

UNDERVOLTAGE RELEAS

Fast clipping control accessories

| You can remotely control the DMX³ thanks to its range of accessories:
shunt trips, undervoltage releases, motor operators and closing coils.
All the control accessories are simply clipped on to the front panel of the circuit breaker which is especially configured in order to facilitate the clipping.
Every type of accessory is compatible with its own location, in order to avoid any possible mistake

(4)
Undervoltage releases are devices which are generally controlled by an N / C type contact. The trigger instantaneous opening of the circuit breaker if their supply voltage drops below a certain threshold and in particular fthe control contact opens. These releases are equipped with a device for limiting their consumption after the circuit has been closed

LEGRAND ADVANTAGE

Electrical connection is made in no time thanks to the fast connector supplied on all above accessories

NUMBER OF CONTROL AUXILIARIES FOR DMX ${ }^{3}=3$ Shunt trip:
Undervoltage release: 1
Technical characteristics: - Nominal voltage Un: 24
and from $24 \mathrm{~V}=$ to 250 V -- Tolerance on nominal voltage 85 to 110% Vn

- Maximum - Maximum power consumption (max.power for 180 ms): $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$ - Opening time: 60 ms
- Insulation voltage: 2500 V 50 Hz for 1 min - Endurance o
$4 \mathrm{kV} 1.2 / 50 \mathrm{us}$

CLOSING COILS

These coils are used for remotely controlling he closing of the power contacts of the circuit breaker. The springs of the circuit breaker are to be loaded prior to the action
of the closing coils. They are controlled by of the closing coils. They are controlled by n N/O type contact.

Motor operators, are used for remotely reloading the springs of the circuit breaker mechanism immediately after the device closes. The device can thus be re-closed almost immediately after an opening operation. To motorise a DMX ${ }^{3}$ it is necessary to add a release coil If the supply voltage of the controls fails, it is still possible to reload the springs manually. Motor-drive controls have "limit switch" contacts which cut off the power supply of their motor after the springs have been reloaded. Motor operators are easy to mount, with only three screws.

Technical characteristics - Nominal voltage Un: from $24 \mathrm{~V} \sim$ 10480 V and from $24 \mathrm{~V}=$ to $250 \mathrm{~V}=$ - Tolerance on nominal voltage: Spring relo

- Spring reloading time. 7 s - Maximum power consumption $240 \mathrm{VA} \sim / 240 \mathrm{~W}=$ - Starting current: 2 up to $3 \times \ln$ for - Maximum cycle: $1 / \mathrm{min}$

SAFETY AND PADLOCKING ACCESSORIES FOR AN INCREASED SECURITY
The DMX ${ }^{3}$ circuit breakers draw-out types are delivered as standard with safety padlocking shutter preventing access to live terminals. They have a number of other safety devices, such as:

- Key-operated locks:

Main contacts open
Circuit breaker in draw-out position

- Padlocks for:

Main contacts open
Contact shutters closed (for draw-out position)

- Door locking in order to prevent the opening
the contacts of the ACB are closed.

Fixed version equipped with padlocking system

Draw-out version equipped with key-operated lock

The terminal block of DMX ${ }^{3}$ ACBs offers the possibility to connect a trip contact, up to 10 auxiliary contacts and diffrent other control and singalling functions

Easy identification

 of control accessories| Electrical auxiliaries are connected on the front panel on terminal blocks provided for this purpose. Accessories are identified on the front panel.
As the cover has window, it is easy to ascertain, which devices are fitted on the circuit breaker.

The type of rear terminals
can be easily changed according to your needs.

The breaker is supplied with rear terminals for horizontal connection

REAR TERMINALS FOR FLAT CONNECTION

Connection:

maximum adaptability

I The fixed version of DMX ${ }^{3}$ is equipped with rear terminals for horizontal connection with bars.
| You can change connection type according to your needs.

Draw-out version of the DMX3 breakers is supplied with rear terminals for flat connection with bars. You can easily transform those terminals into vertical or horizontal type by using the unique
reversible connector. reversible connecto

The breaker is supplied with rea
terminals for flat connection

Reversible connector for vertical or

FLAT CONNECTION USING THE REAR TERMINALS OF THE BREAKER

Connection:

maximum adaptability (continued)

Draw-out version of the DMX3 breakers is supplied with rear terminals for flat connection with bars. You can easily transform those terminals into vertical or horizontal type by using the unique reversible connector.


```
CONNECTIONS: A FEW RECOMMENDATIONS !
Connections provide the electrical connection of equipment and are also responsible
for a considerable proportion of their heat dissipation.
Connections must never be under-sized
Plates or terminals must be used over a maximumarea
Heat dissipation is encouraged by arranging the bars vertically. If an uneven number
of bars is connected, place the higher number of bars on the upper part of the terminal.
Avoid bars running side by side: this causes poor heat dissipation and vibrations.
Place spacers between the bars to maintain a distance between them which
```

All DMX ${ }^{3}$ air circuit breakers (fixed and draw-out version) can be fitted with an interlocking system which guarantees "mechanical safety" in the event of supply inversion. Interlocking is achieved using a cable system and interlocking units mounted on each circuit breaker. Every circuit breaker composing the supply invertor must be equipped with one interlocking unit.
This system allows devices of different sizes and types (3P, 4P, fixed, draw-out) to be interlocked. DMX3 devices can be installed in different configurations inside the enclosure.
This mechanical interlocking system can be supplemented by motorised operators and an automation control unit making the invertor fully automatic.
The Legrand automatic control unit Cat. $N^{\circ} 26193$ allows to easily manage the automatic switching of two sources.
Controlled by a microprocessor, the unit is fully programmable. All the parameters are adjustable: values of the thresholds of tension, temporization between switching, starting up of a generator ...

Control panel of a supply invertor with automation control unit Cat. $\aleph^{\circ} 26193$

Example of algorithm for the functioning of an automatic supply invertor

Continuity of service and increased safety
| Supply invertors answer the double need of continuity of service and greater safety (security). Traditionally used in hospitals, public buildings, industries with continuous manufacturing processes, airports and military applications, supply invertors become increasingly required for new applications such as telecommunications and computing treatment or in the management of energy sources, notably those say "renewable energies".

Flexible configurations

(Examples of supply invertors)

The two DMX3 devices (D1 and D2) draw current on a common busbar. They can only be installed in the same enclosure if the sum of their currents does not exceed the permissible value for the recommended size.

The two DMX3 devices (D1 and D2) are connected to a central common on-load, they can be in the same enclosure

STAND-BY POWER SUPPLY (WITH LOAD SHEDDING)

The two DMX ${ }^{3}$ devices (D1 and D2) are not on-load simultaneously and can therefore be installed
in the same enclosure. D3 can
be on-load at the same time as D
and must be installed in another enclosure.

| Supply invertor assures the following functions:

- Switching between a main source and a secondary source in order to supply the circuits requiring continuous service (for safety reasons) or for energy
saving purpose (when the secondary source is different from the network).
- Management of the functioning of the secondary source (power generator) supplying the safety circuits.

MECHANICAL INTERLOCK FOR 3 CIRCUIT BREAKERS				
	The three DMX ${ }^{3}$ circuit breakers are connected to one common busbar. D1 and D2 breakers are supplying the energy from two different power transformers and D3 from a power generator (in case of emergency). For this configuration all the three breakers can be simultaneously open. At any time, only one single circuit breaker can be on-load. The following table presents all possible combinations of mechanical interlock of the 3 breakers.	0 1 0 0	0 0 1	0 0 0 1
	The following example presents three circuit breakers with double mechanical interlock for D2 circuit breaker. D1 and D3 breakers are supplying the electricity form 2 power transformers. There are 6 interlocking combinations possible.	0 1 0 0 1 0 1	0 0 0 1 1	0 0 1 0 0 1 1
	The following example presents three circuit breakers with double mechanical interlock for D2 circuit breaker. It is a possible version of the previous scheme, presenting four combinations. D1 and D3 breakers supply energy for independent circuits. D2 breaker is used in case of emergency for priority circuits.		0 0 0 0 1	sed

Flexible configurations

(Examples of supply invertors) (continued)
I DMX ${ }^{3}$ and $D M X^{3}$ - I devices can be fitted with an interlocking mechanism
which guarantees "mechanical safety" in the event of supply inversion.
I Interlocking is achieved using interlocking units mounted on the side of the devices
and a cable system.

CABLE LENGTH SELECTION TABLE		
$\begin{aligned} & \text { Length } \\ & (\mathrm{mm}) \end{aligned}$	Type	Cat. ${ }^{\circ}$
2600	1	28920
3000	2	28921
3600	3	28922
4000	4	28923
4600	5	28924
5600	6	28925

2 DMX ${ }^{3}$ - HORIZONTAL CONFIGURATION

2 DMX ${ }^{3}$ - VERTICAL CONFIGURATION

Required cable length:
$=1570+\mathrm{V}$

Easy to install mechanical

 interlock system(The choice of cable for mechanical interlock)
| Mechanical interlock is set up using cables and a mechanical interlock device and can interlock 2 or 3 devices, which may be different type in a vertical or horizontal configuration.
| The interlock device is mounted on the right-hand side of the air circuit breaker.

	FRAME 1 DMX ${ }^{3} 2500$		FRAME 2 DMX ${ }^{3} 2500$ AND DMX ${ }^{3} 4000$	
	3 P	4 P	3 P	$4 \mathrm{P}^{(1)}$
	FIXED OR DRAW-OUT		FIXED OR DRAW-OUT	
$\mathrm{XL}^{3} 4000$ 24 MODULES USABLE WIDTH 600 MM				\%
	Depth of enclosures: 725 or 975 mm		Depth of enclosures: 725 or 975 mm up to 2500 A 975 mm up to 4000 A	

${ }^{\text {(1) }}$ Except supply invertors

Be free to choose XL^{3} fully adaptable enclosure

It is very easy to create the configuration you want thanks to the different available sizes of $\mathrm{XL}{ }^{3} 4000$ enclosures: 2 widths, 3 depths, and 2 heights. | A full range of accessories, such as dedicated fixing plates and faceplates, facilitates the integration of $D \mathrm{DX}^{3}$ devices inside XL^{3} enclosures.

```
LEGRAND ADVANTAGE
Optimized space and reduced width of main distribution horrd
XL}
    thanks to their compact size.
    The correct size for the enclosure, and thus the power to be dissipated, is obtained by adapting
    the depth of the assembly:
    .725 mm min. up to 2500 A
    975 mm min. up to 4000 A
```

DMX ${ }^{3}$ FIXED VERSION

DMX ${ }^{3}$ DRAW-OUT VERSION

Be free to choose XL³ fully

 adaptable enclosure (continued)I DMX ${ }^{3}$ circuit breakers and switches are mounted on horizontal plates.
| Four different plates are available for fixed version or draw-out version
of the breaker and for 24 modules (width 600 mm) and 36 modules (width 850 mm) $\mathrm{XL}^{3} 4000$ enclosures. They consist of a horizontal plate and a strengthening crosspiece.

FIXING PLATES SELECTION CHART
DMX ${ }^{3}$ devices are placed on the plate and fixed using screws and nuts.
The use of lifting equipment is strongly recommended for placing DMX ${ }^{3}$ devices on the plate.

Version		DMX ${ }^{3}$ fixed version		DMX ${ }^{3}$ draw-out version	
XL ${ }^{3} 4000$ enclosure type		24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)	24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)
$\begin{aligned} & D M X^{3}-1600 \\ & D M X^{3}-11600 \end{aligned}$	3P 4 P	020780	020781	020780	020781
$\begin{aligned} & \text { DMXX - N } 2500 \\ & \text { DMX }{ }^{3} \text { - } 2500 \\ & \text { DMX } 2500 \\ & \text { DXX }{ }^{3} \text { - } 125000 \end{aligned}$	3P 4 P				
$\begin{aligned} & D M X^{3}-N 4000 \\ & D M X^{3}-H 4000 \\ & D M X^{3}-L 4000 \\ & D M X^{3}-14000 \end{aligned}$	$3 P$ $4 P$				

FACEPLATES SELECTION CHART
All XL $L^{3} 4000$ metallic faceplates are equipped with hinges and lock
All LL $^{3} 4000$ metallic faceplates are equipped with hinges and

Version		DMX ${ }^{3}$ fixed version		DMX ${ }^{3}$ draw-out version	
$\mathrm{XL}^{3} 4000$ enclosure type		24 modules (600 mm width)	36 modules (850 mm width)	24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)
$\begin{aligned} & \text { DMX }{ }^{3}-1600 \\ & \text { DMX }^{3}-11600 \end{aligned}$	3P 4 P	021084	0210860210880210 (for 2 OMX ${ }^{3}$ side by bide)	021085	021087 021089 (for 2 DMX3 side by side)
$\begin{aligned} & D_{D X^{3}-N ~} 2500 \\ & D M X^{3}-H 2500 \\ & D M X^{3}-12500 \end{aligned}$	3P 4 P	020938	020948	020938	020948
DMX ${ }^{3}$ - L2500	3P 4 P	020938 020939		020938 020939	
DMX ${ }^{3}$ - N 4000 DMX ${ }^{3}$ - H 4000 DMX ${ }^{3}$ - L 4000 DMX ${ }^{3}$ - 14000	3P 4 P	020938 020939		020938 020939	

[^0]tllegrand

Air circuit breakers $\mathrm{DMX}^{3} 1600$ NEW
$\begin{array}{l}\text { Nrom } 630 \text { to } 1600 \mathrm{~A}\end{array}$
$\begin{array}{l}\text { DMX } 1600 \text { electronic } \\ \text { protection units }\end{array}$

Automatic air circuit breakers must be equipped with DMX ${ }^{3} 1600$ electronic Automatic air circuit breakers must be equipped with DMX 3 300 electron
protection units Cat.No $028164 / 65 / 66$, imperatively ordered together for Protection units Cat.No
factory assembly
Please ask for DMX
Please ask for DMX ${ }^{3}$ order form
Pack Cat.Nos Fixed versio

\section*{| 630 |
| :--- |
| 800 |
| 120 |
 1000

1250
 630
800
1000
1250
1500}

Supplied with
-4 auxiliary co
-4 auxiliary contacts: $N \mathrm{NO} / \mathrm{NC}$

- rear orientable terminals for horizontal and vertical connection with bars
- door sealing

Breaking capacity Icu $42 \mathrm{kA}(415 \mathrm{~V} \sim)$

Breaking capacity Icu $50 \mathrm{kA}(415 \mathrm{~V} \sim)$

Draw-out versio
Supplied with:
-4 auxiliary con

$$
\begin{aligned}
& \text { - } 4 \text { auxilary cont } \\
& \text { draw-out base }
\end{aligned}
$$

- rear orientable terminals for horizontal and
vertical connection with barS
- door sealing
- door sealing

Breaking capacity Icu $42 \mathrm{kA}(415 \mathrm{~V} \sim)$

028112 08013 028014 028014 028016	
028036 028037 028038 028039 02803	$\begin{aligned} & 02828 \\ & 028 \\ & 028 \end{aligned}$

$\ln (A)$
630
800
1000
1250
1600
Breaking capacity Icu $50 \mathrm{kA}(415 \mathrm{~V} \sim)$

Brea
630
6

M ${ }^{3} \mathrm{x}^{3}$ circuit breakers must be equipped with electronic protection units adjustments of the protection conditions, while maintaining total discrimi-
nation with downstream devices nation with downstream devices

Trip free switches DMX^{3}-I 1600 from 1000 to 1600 A

Fixed / draw-out version

Temperature									
$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$6^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
${ }_{(A)}^{\max x}$	Ir/ln	$\operatorname{lmax}_{(A)}$	Ir/In	$\max _{(A)}$	Ir/in	$\operatorname{lmax}_{(A)}$	r/In	$\underset{(A)}{\max }$	r/ln
1000	1	1000	1	1000	1	1000	1	1000	05
1250	1	1250	1	1250	1	1187	0.95	1125	0.9
1600	1	1600	1	1328	0.83	1280	0.8	1216	0.76

Auxiliaries, accessories and fixing devices for DMX ${ }^{3} 1600$ NEW

Pack Cat.Nos Control and signalling auxiliaries

Cat.Nos	Control and signalling auxiliaries
	Shunt trip
When energised the circuit breaker will be tripped	

Shunt trip When energ
 24 V ener the circuit breaker will be tripped

Undervoltage releases
When the coil is de-energised, the circuit breaker wil be tripped

028136 028137 028138
 028138 02813 028140

Module for delayed triping
To be used with above und
$028141110 \mathrm{~V} \sim /=$ (time
1020

$28143110 \mathrm{~V} \sim /=$ (time delay 3 s
$0814420 \mathrm{~V} \sim$ = time delay 3 s
028145110 V
028145
028146
Motor operators
To motorize a $\mathrm{DM} \mathrm{X}^{3}$, it is possible to attach, to the
motor operators, a rele esse coil ((undervoltage or trip
on energising) and a closing coil
on energising) and a closing coil
$2812024 \mathrm{~V} \sim /=$
$028122110-130 \vee \sim \sim=$
$08123220-250 \mathrm{~V} /=$
02124
$28123220-250 \mathrm{~V} \sim$
$08124415-440 \mathrm{~V} \sim$
Closing coils
Enables remote closing of the circcuit breaker if the
Enabies remote closing of
lesing spring is charged
$02812624 \mathrm{~V} \sim /=$
$02812748 \mathrm{~V} /=$
$02812748 \mathrm{~V} \sim / \overline{=}$
$02812810-10 \mathrm{~V} \sim /=$
$02812920-25 \mathrm{~V} \sim /=$
Signalling contact for draw-out version
Inserted / test / draw-out signalling contact
1 changeover contact per position (up to 2 contacts
1 changeover contact per position (up to 2 contacts
with double accessor ith saftery button for test
oosition cat no. 0281 287 is not mounted)
Locking
Key locking in «open» position

028178

$28179{ }_{1}^{\text {ran }}$
028180
181
fixe
1 loc 1 lock+1
random
Key locking in the draw-out positio
$028182 \begin{aligned} & \text { Mounting of the lock on the base } \\ & \text { lick }+1 \\ & \text { random Profalux type flat key (} n^{\circ} \text { ABA90GEL6149) }\end{aligned}$
$028183 \begin{gathered}\text { rack } 1 \text { lock }+1 \text { Ronis type star key (} n^{\circ} \text { HBA90GPS6149) } \\ \text { random }\end{gathered}$

Supply invertors equipment for NEN DMX ${ }^{3} 1600$

Pack Cat.Nos Equipment for supply invertors

> Door locking Prevents openir Prevents opening of the door with the
circuit breaker closed circuit breaker closed
Left-hand and right-hand side mounting Padlock
Accessories
Mechanical counter
Counts total number of operation cycles Counts total
of the device Contact «ready to close» with charged springs
Module with 6 auxiliary contacts Inserted/test/drawout lock bu
Rating mis-insertion device Prevents the insertion of a draw-out circu breaker in an incompatible base

For DMX ${ }^{3}$ Frame 1600 fixed and draw-out
028155028156 For frontal connection, fixed version
al connection, draw-out versi Spreaders for DMX ${ }^{3}$ Frame 1600
fixed and draw-out versions fixed and draw-out versions
To be fixed onto orientable rear terminals
of the circuit breaker

$3 P$	
28159	
28160	

For connection with bars (horizontal use)
Insulation shields
For fixed version

Pack	Cat.Nos	Equipment for supply invertors
1		The mechanical interlock is set up using cables and can interlock devices, which may be different type in a vertical or horizontal configuration. The interlock unit is mounted on the right-hand side of the device. Cable interlock to be ordered separately (cable length to be specified according to every configuration - see below).
	028190	Interlock for DMX ${ }^{3}$ frame 1600
		Cable interlock
		Length
1	$\begin{aligned} & 028917 \\ & 028918 \end{aligned}$	1000 mm 1500 mm
1	O28920	2600 mm
1	O28921	3000 mm
1	O28923	4000 mm
1	028924 0289 0289	4600 mm

Ll legrand

Air circuit breakers DMX³ 2500 and 4000 from 800 to 4000 A

Automatic air circuit breakers must be equipped with electronic protection unit (p. 97), imperatively ordered together for factory assembly
Please ask for DM ${ }^{3}$ order form

Pack	Cat.Nos		Fixed version	Pack	Cat.	Nos	Draw-out version		
	Frame		Supplied with - 4 auxiliary contacts: NO/NC - rear terminals for horizontal connection with bars - door sealing DMX ${ }^{3}$ - N 2500 Breaking capacity Icu 50 kA (415 V ~)		Frame 2500		Supplied with: - 4 auxiliary contacts: NO/NC - draw-out base and kit - flat rear terminals for connection with bars - door sealing DMX ${ }^{3}$ - N 2500 Breaking capacity Icu 50 kA (415 V ~)		
	${ }^{3 P}$	${ }^{4 \mathrm{P}}$	$\underline{\ln (A)}$		${ }^{3 P}$	${ }^{4 \mathrm{AP}}$	${ }^{\text {In (A) }}$		
1	028621 028622	028631 08632	$\begin{aligned} & 800 \\ & 1000 \end{aligned}$	1	$\begin{aligned} & 028721 \\ & 0287 \end{aligned}$	$\begin{aligned} & 028731 \\ & 028732 \\ & 0287 \end{aligned}$	$\begin{aligned} & 800 \\ & 1000 \end{aligned}$		
1	028623	028633	1250	1	028723	028733	1250		
1	028624	028634	1600	1	028724	028734	1600		
1	028625	028635	2000	1	028725	028735	2000		
1	028626	028636	2500	1	028726	028736	2500		
	Frame 2500		DMX ${ }^{3}$ - H 2500 Breaking capacity Icu 65 kA (415 V ~)		Frame 2500		DMX ${ }^{3}$ - H 2500 Breaking capacity Icu 65 kA (415 V ~)		
	${ }^{3 P}$	${ }^{4 \mathrm{P}}$	$\ln (\mathrm{A})$		${ }^{3 P}$	${ }^{4 \times}$	In(A)		
1	028641	028651 028652	800 1000	1	$\begin{aligned} & 028741 \\ & 028742 \end{aligned}$	$\begin{aligned} & 0 \\ & \\ & 08751 \\ & 2875 \end{aligned}$	800 1000		
1	028643	028653	1250	1	028743	028753	1250		
1	028644	028654	1600	1	028744	028754	1600		
1	028645	028655	2000	1	028745	028755	2000		
1	028646	028656	2500	1	028746	028756	2500		
	Frame 4000		DMX ${ }^{3}$ - L 2500 Breaking capacity Icu 100 kA (415 V~)				DMX ${ }^{3}$ - L 2500 Breaking capacity Icu 100 kA (415 V ~)		
	${ }^{3 P}$	4 4	$\ln (A)$		${ }^{3 P}$	4 P	${ }^{\ln (A)}$		
1	028661 028662	$\begin{aligned} & 028671 \\ & 028672 \end{aligned}$	$\begin{aligned} & 800 \\ & 1000 \end{aligned}$	1	$\begin{aligned} & 028761 \\ & 028762 \end{aligned}$	$\begin{aligned} & 028771 \\ & 028772 \end{aligned}$	$\begin{aligned} & 800 \\ & 1000 \end{aligned}$		
1	028663	028673	1250	1	028763	028773	1250		
1	028664	028674	1600	1	028764	028774	1600		
1	028655	028675	2000	1	028765	028775	2000		
1	028666	028676	2500	1	028766	028776	2500		
	Frame 4000		DMX ${ }^{3}$ - $\mathbf{N} 4000$ Breaking capacity Icu 50 kA (415 V~)				DMX ${ }^{3}$ - $\mathbf{N} 4000$ Breaking capacity Icu $50 \mathrm{kA}(415 \mathrm{~V}$)		
1	${ }^{3 P}$	4 P	$\ln (\mathrm{A})$		${ }^{3 P}$	4 P	$\ln (\mathrm{A})$		
	$\left.\begin{array}{l\|l\|} 0286 \\ 0 & 286 \\ 0 & 27 \end{array} \right\rvert\,$	$\begin{aligned} & 028637 \\ & \text { O86 } 288 \end{aligned}$	$\begin{aligned} & 3200 \\ & 4000 \end{aligned}$	1	$\begin{aligned} & 028727 \\ & 028728 \\ & 0 \end{aligned}$	$\begin{aligned} & 028737 \\ & 028738 \end{aligned}$	$\begin{aligned} & 3200 \\ & 4000 \end{aligned}$		
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Frame 4000		DMX ${ }^{3}$ - $\mathbf{H} 4000$ Breaking capacity Icu 65 kA ($415 \mathrm{~V} \sim$)		Frame 4000		DMX ${ }^{3}$ - 4000		
			Breaking capacity Icu $65 \mathrm{kA}(415 \mathrm{~V}$)						
	${ }^{3 P}$	4 P			$\ln (\mathrm{A})$		${ }^{3 P}$		$\ln (\mathrm{A})$
	028647 028648	028657 028658	3200 4000	1	028747 028748	028757 028758	3200 4000		
			DMX ${ }^{3}$ - L 4000 Breaking capacity Icu 100 kA (415 V ~)		Frame 4000				
	Frame 4000				DMX ${ }^{3}$ - L 4000 Breaking capacity Icu 100 kA (415 V ~)				
1		$\left\|\begin{array}{c} 4 \mathrm{P} \\ 028677 \\ 0 \end{array}\right\|$	$\begin{aligned} & \ln (A) \\ & 3200 \end{aligned}$	1				4P	$\ln (A)$ 3200
1	028668				028768				

Air circuit breakers DMX3 6300 5000 and 6300 A

Automatic air circuit breakers must be equipped with electronic protection unit, imperatively ordered together for factory assembly rack

DMX ${ }^{3}$ circuit breakers must be equipped with electronic protection units (to be orddered together for factory assembuly) enabling very precise discrimination with downstream devices, of mains fault or when the breaker is open or not connected
Pack Cat.Nos MP4 protection units with LCD screen
 values, settings and 1 log
Adjustment via selector switches Adijustment of:
li, r, tr

LSI protection unit Adjustment of:
Isd, tsd, Ir, tr and li

LSIg protection unit
 Isd, tsd, 1 Ir ,
Ig and tg

MP6 touch screen protection units
Measure and display instantaneous, maximum and
average values of different electrical values and protection conditions
Fautt signalling and log
LSI protection unit
028803
Adjustment of: Isd, tsd, rr , tr and li
LSIg protection unit
Adiustment of: Isd, tsd,
Accessories for electronic protection units
28805^{1} Communication option for DMX ${ }^{3}$ electronic
Protection units
0624 VCD exteral auxiliary power supply
10^{1} External neutral for DMX 6300
xternal neutral for DMX ${ }^{3} 6300$
External neutral for DMX ${ }^{3} 2500$ and 4000
1: Optional accessories. to be ordered when ordering lectronic

from 1250 to 6300 A

Accessories for DMX³2500, 4000 and 6300

Accessories for DMX ${ }^{3} 2500,4000$ and 6300 (continued)

Rear terminals and supply invertors for DMX ${ }^{3} 2500,4000$ and 6300

Pack	Cat.Nos
1	028830
1	028831
1	028828
1	028829
1	028832
1	028833
1	028820
1	028821
1	028824
1	028826

Key locking in "open" position tled on the frame Cat.No 028828 be fitted on the frame Cat.No 028828 Cat.Nos 282830 for locks Mounting of the lock on the base Lock and star key $\mathrm{N}^{\circ} \mathrm{HBA}$ A0GPS66149 © Prevents opening of the door with the Circuit breaker closed Padlocks in "open" position Padlocking system for ACB (padlock not Supplied) Padlock for buttons Padlocking system for shutters (padlock

Padlocking syste
not supplied)

$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		Equipment for conversion of a fixed device into draw-out device
		Bases for draw-out device For DMX ${ }^{3} / \mathrm{DMX}^{3}$ - 1 frame 2500 For DMX ${ }^{3} /$ DM 3-I frame 4000 For DMX ${ }^{3} / D M X^{3}-1$ frame 6300
$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{ll\|l} 0 & 28909 & 09 \\ 0289 & 289 & 10 \\ 0 & 089 & 289 \\ 0 & 289 & 15 \\ 0 & 289 & 12 \end{array}$	Transformation kit for draw-out version For DMX ${ }^{3} / D X^{3}$ - frame 2500 For $D M X^{3} / D X^{3}$-I frame 4000 For $D M X^{3} /$ DMX 3-I frame 6300
1	028825	Accessories
		Rating mis-insertion device Prevents the insertion of a draw-out circuit
1	028823	Operations counter Counts total number of operation cycles of
1	028814	Contact "ready to close" with charged
1	$\begin{aligned} & 028815 \\ & 028879 \end{aligned}$	Additional signalling contact Lifting plate
11	$\begin{array}{c\|c\|c} 3 P \\ 028898 & 028899 \end{array}$	Insulation shields
		For fixed version Insulation shields for $\mathrm{DMX}^{3} / D X^{3}$-I frames 2500/4000/6300
	028818 \|028819	For draw-out version Insulation shields for $\mathrm{DMX}^{3} / \mathrm{DMX}^{3}$-I frames

DMX ${ }^{3} 1600$
Supply invertors equipment

\square Choice of cable interlock

Calculation of cable length:
$L 1=2500$
$L 2=2500$
Installation principle
For XL^{3} 4000- $\mathbf{3 6}$ modules
$2 \mathrm{DMX}^{3} / \mathrm{DMX}{ }^{3}-1$ can be installed side by side on the same fixing plate.

\square Functions
Standard unit Cat.No 026193
Used to adjust and manage the source inversion operating conditions

- Remote control (opening/closing) of MCBs
- Remote control (opening/closing) of MCBS
- Microprocessor output from unit (positive safety)
- Programmable I/I)

Programmable l/

- Votage reading: 3 -phase
phase-neutra
phase-phase
- Control (on/off) of generator set
- Inication of the stateo of t te MCBS MCBs (open/Closed/tripped)
- Source inversion blocked in the event of:
- Trice inversion blocked in the event of
- If a draw-out ACB is not inserted in its base, as the open/close
commana of the unit is inoperative
Communicating unit Cat.No $\mathbf{0} 26194$
All the standard functions, plus:
All the standard functions, plus:
- Maximum voltage reading
Maximum voltage reading
Reading of phase rotation direction
Frequency reading
- Frequency reading
- Communication: data transmission via the RS 485 port (Modbus
protocol) protocol)

Technical characteristics
Power supply: 187 to 264 V
Frequency: 45 to 65 Hz
Un: 80 to 690 V .
Control relay (1 and 4): $\begin{aligned} & 1 \mathrm{NO}-12 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 1 \mathrm{NO}-5 \mathrm{~A}-25 \mathrm{~V} \sim \\ & 1\end{aligned}$
Cable cross-section: 0.2 to $2.5 \mathrm{~mm}^{2}$
Dimensions (width \times height \times depth): $144 \times 144 \times 90$
Cimensioss (width \times height \times depth): $144 \times 144 \times 90 \mathrm{~mm}$
Drotection: IP 20 at the rear
Protection: If 20 a
IP 41 at the front
and
IP 54 at the front with protective screen
Operating temperature: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Dimensions and panel board faceplate cut-out

DMX ${ }^{3} 1600$
electronic protection units

\square Settings of the electronic protection units

MP4 LI

- Long time delay protection against overloads

Ir from 0.4 to $1 \times$ In ($6+6$ steps on two selectors
$(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02$)$

- Long delay protection operation time

Lr - at $6 \times$ rl ((+4 stectes)
$\mathrm{tr}=5-10-20-30 \mathrm{~s}$ (MEM
-Instantaneous protection against very high short circuits
lif
from 2 to $15 \times \ln$ or $\operatorname{lcw}(9$ steps $)$ Ii $=2-3-4-6-8-10-12-15 \times$ In or lcw

- Neutral protection: OFF-50\%-100\%

MP4 LSI
Ir, tr, Isd, li adjustment on front panel
$\underbrace{\text { (ss) }}_{(A)}$

- Long time delay protection against overloads

- Long time delay protection against overloads
In from 0.4 to $1 \times$ In $(6+6$ stepss on two selectors $(0.4 \div 0.9$, by steps
of 0.1 and $0.0 \div 0.1$, by steps of 0.02$)$
- Long delay protection operation time
tr -at I r $(4+4$ steps) $\mathrm{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON) $30-20-10-5 \mathrm{~s}$
tr at $6 \times 1 \mathrm{r}(4)$
(MEM OFF)
- Short time delay protection against short circuits
Isd from 1.5 to $10 \times$ Ir $(9$ steps) Isd $=1.5-2-2.5-3-4-5-6-8-10 \times$ ir - Short time delay protection operation time
$\mathrm{tsd}=0.1-0.2-0.5-1 \mathrm{~s}(\mathrm{t}=$ const $)$,
$0.3-0.2-0.1-0.01 \mathrm{~s}(1 \mathrm{It}=$ const $)$
- Instantaneous protection against very high short circuits
lif from 2 to $15 \times$ In or ICw (9 steps) $\mathrm{i}=\mathrm{off}-2-3-4-6-8-10-12-15 \times$ In or Icw
- Neutral protection: OFF-50\%-100\%

MP4 LSIg
Ir. tr, li, Ig, tg, Isd, tsd, adjustment on front pane

- Long time delay protection against overloads

Ir from 0.4 to $1 \times$ In ($6+6$ steps) on two selectors
$(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time
$\mathrm{tr}-\mathrm{at} 6 \times \operatorname{lr}(4+4$ steps) $\mathrm{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON)
tr - at $6 \times$ In ((+ + 4 steps $)$ tr $=5-10-20-30 \mathrm{~s}$ (MEM ON)
$30-20-10-5 \mathrm{~s}$ (MEM OFF)
- Short time delay protection against short circuits
Isd from 1.5 to $10 \times$ Ir $(9$ steps) Isd $=1.5-2-2.5-3-4-5-6-8-10 \times$ Ir - Short time delay protection operation time
tsd $=0.1-0.2-0.5-1$ s (t=constant),
$0.3-0.2-0.01$ s $(12 t=$ constant $)$
- Instantaneous protection against very high short circuits
instantaneous protection against very high short circuits
li from 2 to $15 \times \ln$ or $\mathrm{IcW}(9$ steps) $\mathrm{I}=\mathrm{OFF}-2-3-4-6-8-10-12-15 \times$ In or ICW - Earth fault current
 - Neutral protection: OFF-50\%-100\%

DMX ${ }^{3} /$ DMX 3

Downstream Upstream		DMx ${ }^{1600}$					
		630 A	800 A 100	1000 A 1250 A 1600 A			
dmx ${ }^{3}$	630 A		T	T	T	${ }^{\top}$	
	800 A			T	T	T	
	1000 A				T	T	
	1250 A					T	
	1600 A						
T: total selectivity, up to downstream circuit breaking capacity according to IEC 60947-2 Icu of downstream circuit breaker \leq Icu of upstream circuit breakerSelectivity values are intended with protection unit properly adjusted DMX ${ }^{3} / \mathrm{DX}^{3}$							
	DMX 1600						
	630 A	800 A	1000 A	1250 A	1600 A		
Dx' $60000-10 \mathrm{kA}$,		T	,	${ }^{+}$		
Dx $110000-16 \mathrm{kA}$	T	T	T	T	T		
Dx 25 kA	-	T	T	T	T		
DXP36 KA	T	T	T	T	T		
DX: 50 kA	T	T	T	T	T		

DMX ${ }^{3} 1600$ technical characteristics

Selective time-current tripping characteristic for MP4 protection units

If short-circuit current is higher than Icw value or lii s setted at Icw position, tripping time is equal to 30 ms
Ir $=$ long time setting current
Tr
$\mathrm{T}=$ long time telting current
Im $=$ short
$I m=$ short time setting current
$\mathrm{T}=\mathrm{m}$ short
If
If $=$ ine delay
anteous intervention current

Ground fault tripping curve for LSIg protection unit

${ }^{10 .}$
10^{2}

Pass-through specific energy characteristic

$\operatorname{lcc}(k A)=$ estimated short circuit symmetrical current (RMS value)
Rtt $\left(A^{s} s\right)=$ past Icc (kA) = estimated short circcit symme
It $^{2}\left(A^{2} s\right)=$ pass-through specific energy

DMX ${ }^{3} 1600$
technical characteristics (continued)
Technical characteristics

DMX ${ }^{\text {according to } 1 \text { IEC 60947-2 }}$		DMX 1600	
		42 kA	50 k
Frame current (A)		1600	
Number of poles		3P-4P	
Rating In (A)		6308800/1000/1250/1600	
Rated insulation voltage		1000	
Rated impulse withstand voltage Uimp (kV)		12	
Rated operational voltage (5)	(5060 Hz) Ue (V)	900	
Category of use			
Ultimate breaking capacity Icu (kA)	2201240 V 2	42	50
	${ }^{3801415 \mathrm{~V} \sim}$	42	50
	${ }^{440} 1460 \mathrm{~V} \sim$	42	50
	4801500 V 2	42	50
	${ }_{690} 60$	42	42
Service braking capacity les (\% Icu)		100\%	100\%
Short-circuit making apacity Icm (kA)	$2201240 \mathrm{~V} \sim$	88	105
	$380 / 415 \mathrm{~V} 2$	88	105
	$4401460 \mathrm{~V} \sim$ 4801500 v 2	88 88 88	105
	${ }_{6800 \mathrm{~V} 2}$	${ }_{88}^{88}$	${ }_{88} 8$
	690 V	${ }_{8} 8$	88
Short time withstand current Icw (kA) cw (kA) for $t=1 \mathrm{~s}$	2201240 V 2	42	50
	$3801415 \mathrm{~V} \sim$	42	50
	$440 / 460 \mathrm{~V} 2$	42	50
	$4801500 \mathrm{~V} \sim$	42	50
	$600 \mathrm{~V} \sim$	${ }^{42}$	42
	690 V	42	42
Magnetic threshold	$\underset{\substack{\text { İtantaneous releases } \\ \text { lix }}}{\text { In }}$	${ }^{(2+15)} 8 \mathrm{lcw}$	
Isolation behavior		Yes	
Uurance (cycle)		5000	
		10000	

Temperature derating

Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		${ }^{65}{ }^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	1 max (A)	Ir/in	$\mathrm{Imax}^{(A)}$	Ir/in	$I_{\text {max }}(\mathrm{A})$	Ir/ln	${ }_{\max }(\mathrm{A})$	Ir/in	1 max (A)	Ir/m
DMX 1600	630	1	630	1	630	1	630	1	630	1
	800	1	800	1	800	1	800	1	800	1
	1000	1	1000	1	1000	1	1000	1	950	0.95
	1250	1	1250	1	1250	1	1187	0.95	1125	0.9
	1600	1	1470	0.92	1330	0.83	1280	0.8	1216	0.76

\square Derating at different altitudes

Air circuit braker	DMx 1600			
Altitude H (m)	<2000	3000	4000	5000
Rated current (at $\left.40^{\circ} \mathrm{C}\right) \ln (\mathrm{A})$	In	$0.93 \times 1 \mathrm{n}$	$0.88 \times 1 \mathrm{n}$	$0.82 \times 1 \mathrm{ln}$
Rated voltage Ue (V)	690	600	500	440
Rated insulation voltage Ui (N)	1000	900	750	600

Minimum recommended dimension of busbars per pole

DMX³ 1600 and DMX³-I 1600 - Frame 1600 dimensions

Fixed version

Overall dimensions

$A=$ fixing point on plate of enclosure
Rear terminals for horizontal connection with bars
4 P version

6x011
$\left.\xrightarrow{25} \rightarrow\right|_{50}{ }^{50}$
$\rightarrow{ }^{70} \rightarrow$

Rear terminais for vertical connection with bars

Reversible rear terminals

DMX 31600 and DMX³-| 1600 - Frame 1600 dimensions

Rear terminals for vertical connection with bars
3 P version
4 P version

DMX ${ }^{3} 2500$ and 4000 Supply invertors equipment

- Choice of cable interlock

- Functions

Standard unit Cat.No 026193
Used to adjust and manage the source inversion operating conditions
(DMX

- Remote control (opening/closing) of MCBs
- Microprocessor output from unit (oositive sity
(closing) of MCBs
- Programmabiel I/O
- Vottage reading: 3 -phase

Control (on/off) of phase-phase

- Control (on/off) of generator set
- Indication of the state of the MCBs (open/closed/tripped)
- Tricre innersion of blocked in the event of: 1 or 2 devices
- Tripping of 1 or 2 devices
- If a draw-out $A C B$ is not inserted in its base, as the
- If a draw-out ACB is not inserted in
command of the unit is inoperative

Communicating unit Cat.No 026194

All the standard functions, plus:

- Maximum voltage reading
- Reading of phase roataion direction
- Frequency reading
- Communication: data transmission via the RS 485 port (Modbus
protocol)
- Technical characteristics

Power supply: $\begin{gathered}187 \text { to } 264 \mathrm{~V} \sim \\ 9 \text { to } \\ 655 \mathrm{~V}=\end{gathered}$
Frequency: 45 to $065 \mathrm{~Hz}=$
Un: 80 to 690 Vz
Un: 80 to $690 \mathrm{~V} \sim$
Control relay (1 and 4): 1 NO $-12 \mathrm{~A}-250 \mathrm{~V} \sim$
1 NO $-5 \mathrm{~A}-250 \mathrm{~V} \sim$
Cable cross-section: 0.2 to $2.5 \mathrm{~mm}^{2} \mathrm{~A}-250 \mathrm{~V} \sim$
Dimensions
width \times height \times der
 Protection: IP 20
IP 14 at the front
IP 54 at the tront
IP 54 a the front with protective screen
Operating temperature: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Dimensions and panel board faceplate cut-out

DMX ${ }^{3} 2500$ and $D M X^{3}$-I 2500 - frame 1
dimensions

■ Fixed version - frame 1

Overall dimensions

$A=$ fxing point on plate of enclosure
Rear terminals for vertical connection with bars

Spreaders for flat
Spreaders for flat co
Cat.Nos 0 288 86/87

Spreaders for vertical connection with bars Cat.Nos 0288 88/89

Spreaders for horizontal connection with bars
Spreaders for horizontal connection with bars Cat.Nos 028890191 年

DMX 32500 and DMX³-I 2500 - frame 1 dimensions (continued)

- Draw-out version - frame 1

Rear terminals for flat connection with bars

Rear terminals for horizontal connection with bars - Cat.Nos $028896 / 97$
$3 P$ version
4P version

Rear terminals for vertical connection with bars - Cat.Nos 0288 96/97 $3 P$ version

4 P version
$\stackrel{116,5}{316}$

- Draw-out version - frame 2

Overall dimensions

Overall dim
3P version

$D M X^{3}$ 2500, $D X^{3}$-I 2500, $D M X^{3} 4000$ and $D M X^{3}$-I 4000 - frame 2 dimensions (continued)

- Draw-out version - frame 2 (continued)

Rear terminals for flat connection with bars

Rear terminals for vertical connection with bars
Rear terminals for
Cat. Nos $028892 / 93$

DMX 3300 et $D M X^{3}$-| 6300 - frame 3
dimensions

- Fixed version - frame 3

- Draw-out version - frame 3

DMX ${ }^{3}$
electronic protection units

\square Settings of the electronic protection units

$\underset{\text { MP4 }}{\text { If, ti, tr ad }}$
$\xrightarrow{(\mathrm{ts)}} \xrightarrow{\text { (A) }}$

- Long time delay protection against overloads
If from 0.4 to $1 \times \ln (6+6$ steps on two selectors

Ir from 0.4 to $1 \times$ In ($6+6$ stens) on two selectors
$(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02$)$

- Long delay protection operation time
tr at $6 \times \operatorname{lir}$ ($4+4$ steps)
$t r=5-10-20-30 \mathrm{~s}$ (MEM ON) 30-20-10-5 s (MEM OFF)
- Instantaneous protection against very high short circuits
lif rom 2 to $15 \times$ In or lCW (9 steps) $)$ ii $=2-3-4-5-6-8-10-12-15 \times$ In or ICw - Neutral protection: $\operatorname{IN}=|-|-| I I-I V \times \operatorname{Ir}(0-50-100-100 \%)$

MP4, tr, Lm, tm, li adjustment on front panel

- Long time delay protection against overloads
- Lrom 0.4 to $1 \times$ In $(6+6$ steps) on two selectors $(0.4 \div 0.9$, by steps
of 0.1 and $0.0 \div 0.1$, by steps of 0.02$)$ - Long delay $=0.1$, by steps of 0.02)
- Long delay protection operation time
tr-at $6 \times$ Ir
(MEM OFF) $4+4$ steps) $\mathrm{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON) $30-20-10-5 \mathrm{~s}$
- Short time delay protection against short circuits
im from 1.5 to $10 \times$ Ir $(9$ steps $)$ I $m=1.5-2-2.5-3-4-5-6-8-10 \times$ Ir - Short time delay protection operation time

- Instantaneous protection against very high short circuits
lif from 2 to $15 \times \mathrm{In}$ or lcw (9 steps) li= off-2-3--4-6-8-10-12-15 \times In or Icw - Neutral protection: $\mathbb{I N}=|-|-|I| I-V \times \operatorname{Ir}(0-50-100-100 \%)$

$\underset{\text { Ir, tr, li, lg. }}{\text { MP4 }}$

Ir tr li, It to Im, tm, adiustment on front panel

- Long time delay protection against overloads
- Long time delay protection against overloads
in from 0.4 to $1 \times \ln (6+6$ steps) on two selectors
$(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02) - Long delay protection operation time
tr - at 6×1 I $(4+4$ steps) $\mathrm{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON) $\mathrm{tr}-\mathrm{at} 6 \times \operatorname{lr}$ ($4+4$ steps) tr
$30-20-10-5 \mathrm{~s}$ (MEM OFF)
- Short time delay protection against short circuits
Im from 1.5 to $10 \times$ Ir $(9$ steps $)$ Im $=1.5-2-2.5-3-4-5-6-8-10 \times$ Ir - Short time delay protection operation time tm from 0 to $0.3 \mathrm{~s}(4+4$ steps
$0.3-0.2-0.01 \mathrm{~s}$ s $(12 \mathrm{t}=$ constant $)$
-instantaneous protection against very high short circuits
li from 2 to $15 \times$ In or Icw (9 steps) $\mathrm{I}=$ OFF- $-3-4-6-8-10-12-15$ - Earth fault current
- Time 2 to $1 \times \ln (9$ steps) $\mathrm{Ig}=0.2-0.3-0.4-0.5-0.6-0.7-0.8-1 \times \mathrm{In}, \mathrm{OFF})$ Time delay on earth fault tripping
to from 0.1 to $1 \times \ln (4$ steps $) \mathrm{Tg}=0,1-0,2-0,5-1 \mathrm{~s}$ (both $\mathrm{t}=$ constant and
$12=$ teconstant $)$ 12 t=constant)
- Neutral protection: $\operatorname{IN}=|-|-|I|-|-|V| I(0-50-100-100 \%)$

DMX ${ }^{3}$
tripping curves

- Selective time-current tripping characteristic for MP4 and MP6 protection units

- Long time delay protection against overloads
If from 0.4 to $1 \times \ln (7$ steps $)$ If $=0.4-0.5-0.6-0.7-0.8-0.9-1 \times$ In - Long delay protection operation time
tr - at $6 \times 1 \mathrm{l}(4$ steps) $\mathrm{tr}=5-10-20-30 \mathrm{~s}$ (b)

Ir -at $6 \times \operatorname{lr}(4$ steps) tr $=5-10-20-30 \mathrm{~s}$ (both MEM ON and MEM OFF) - Short time delay protection against short circuits
im from 1.5 to $10 \times$ Ir $(9$ steps $)$ Im $=1.5-2-2.5-3-4-5-6-8-10$ - Short time delay protection operation time
 tis from-1 s (both $\mathrm{t}=$ constant and $12 \mathrm{t}=$ =constant $)$
Instantaneous protection against very high short circuits
Earth fault current
Ig from 0.2 to $1 \times \ln (9$ steps $) \lg =0.2-0.3-0.4-0.5-0.6-0.7-0.8-1 \times \mathrm{In}$, OFF

- Time delay on earth fault tripping
tg from 0.1 to $1 \times \ln (4$ steps) $T \mathrm{Tg}=0,1-0,2-0,5-1 \mathrm{~s}$ (both $\mathrm{t}=$ constant and
$\mathrm{t}=\mathrm{t}=$ constant $)$
- Neutral protection: $\mathbb{I N}=1-1-1-1 I-1 / V \times I r(0-50-100-100 \%)$

DMX ${ }^{3}$
selectivity table

- Selectivity in three-phase network $400 \mathrm{~V} \sim$

DMX3/DPX

$\underbrace{\text { Upstream }}_{\text {Downstream }}$		DMX 2500						DMx 4000		DMX ${ }^{6300}$	
		800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DPX 125'10		T	T	T	T	T	T	T	T	T	T
DPX 1600		T	T	T	T	T	T	T	T	T	T
DPX 250 ER ${ }^{\text {(1) }}$		T	T	T	T	T	T	T	T	T	T
DPX 25017 ${ }^{\text {a }}$ M and electronic		T	T	T	T	T	T	T	T	T	T
DPX 630 ${ }^{\text {(1) }}$ TM and electronic		T	T	T	T	T	T	T	T	T	T
thermal	630 A	T	T	T	T	T	T	T	T	T	T
	800		T	T	T	T	T	T	T	T	T
	1000 A			T	T	T	T	T	T	T	T
	1250 A				T	T	T	T	T	T	T
DPX $1600^{(1)}$ electronic	630 A			T	T	T	T	T	T	T	T
	800			T	T	T	T	T	T	T	T
	1000 A				T	T	T	T	T	T	T
	1250 A				T	T	T	T	T	T	T
	1660 A					T	T	T	T	T	T

(1) All breaking capacity
I: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

DMX ${ }^{3} /$ DMX 3

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC
60947-2
Icu of downstream circuit breaker \leq Icu of upstream circuit breaker
Selectivity values are intended with protection unit properly adjusted

DMX ${ }^{3}$ DX

	dmx ${ }^{\text {a }}$									
	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DX $6000-10 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T
Dx 10000 - 16 kA	T	T	T	T	T	T	T	T	T	T
DX 25 kA	T	T	T	T	T	T	T	T	T	T
DX 36 kA	T	T	T	+	T	T	T	T	T	T
DX 50 kA	T	T	T	T	T	T	T	T	T	T

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC
$60947-2$.
Icu of donstream circuit breaker \leq Icu of upstream circuit breaker
Selectivity values are intended with protection unit properly adjusted

DMX ${ }^{3}$
technical characteristics

Llegrand

Frame 2 - fixed and draw-out versions

$\underline{\ln }(\mathrm{A})$	Verrical bars (mm)	Horizontal bars (mm)
630	$1 \times 40 \times 10$ or $2 \times 40 \times 5$	$2 \times 40 \times 5$
800	$1 \times 50 \times 10$ or $2 \times 50 \times 5$	$2 \times 50 \times 5$
1000	$1 \times 50 \times 10$ or $2 \times 50 \times 5$	$2 \times 50 \times 5$
1250	$2 \times 50 \times 5$	$1 \times 50 \times 10+1 \times 50 \times 5$
1600	$1 \times 50 \times 10+1 \times 50 \times 5$	$2 \times 50 \times 10$
2000	$2 \times 50 \times 10$	$2 \times 60 \times 10$
2500	$3 \times 50 \times 10$	$3 \times 60 \times 10$
3200	$3 \times 100 \times 10$	$3 \times 100 \times 10$
4000	$4 \times 100 \times 10$	$5 \times 100 \times 10$

DMX ${ }^{3}$
technical characteristics

Temperature derating Fixed version										
Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
Temperature	1 max (A)	Ir/in	1 max (A)	Ir/in	$\operatorname{lmax}^{(A)}$	Ir/In	1 max (A)	Ir/in	$I_{\text {max }}(\mathrm{A})$	Ir/in
DMx 2500	800	1	800	1	800	1	800	1	800	1
	1000	1	1000	1	1000	1	1000	1	1000	1
	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1880	0.94
	2500	1	2450	0.98	2350	0.94	2250	0.9	2150	0.86
dmx 4000	3200	1	3200	1	3200	1	3136	0.98	3008	0.94
	4000	1	3920	0.98	3680	0.92	3440	0.86	3120	0.78
DMX ${ }^{6300}$	5000	1	5000	1	5000	1	5000	1	5000	1
	6300	1	6300	1	6048	0.96	5796	0.92	5544	0.88
Draw-out version										
Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		${ }^{60} \mathrm{C}$		$665^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	1 max (A)	Ir/in	1 max (A)	Ir/in	$\operatorname{lmax}^{(A)}$	Ir/in	1 max (A)	Ir/in	$I_{\text {max }}(\mathrm{A})$	Ir/in
dmx 2500	800		800	1	800	1	800	1	800	,
	1000	1	1000	1	1000	1	1000	1	1000	1
	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1875	0.94
	2500	1	2400	0.96	2250	0.9	2100	0.84	1950	0.78
DMX 4000	3200	1	3200	1	3200	1	3072	0.96	2880	0.9
	4000	1	3760	0.94	3440	0.86	3200	0.8	2960	0.74
DMx 6300	5000	1	5000	1	5000	1	5000	1	5000	1
	6300	1	6174	0.98	5985	0.95	5796	0.92	5292	0.84

- Derating at different altitudes

Air circuit breaker	DMX ${ }^{2500, ~ \text { dMx }} 40000$ and DMx ${ }^{6} 6300$			
Allitude $\mathrm{H}(\mathrm{m})$	<2000	3000	4000	5000
Rated current (at $\left.40^{\circ} \mathrm{C}\right) \ln (\mathrm{A})$	In	$0.98 \times \mathrm{ln}$	${ }^{0.94 \times 1 \mathrm{n}}$	$0.90 \times 1 \mathrm{n}$
Rated voltage Ue (V)	690	600	500	440
Rated insulation voltage Ui $($ V)	1000	900	750	600

- Minimum recommended dimension of busbars per pole

Frame 1 - fixed and draw-out versions

 to extensive vareity of swith gear constructions shapes and conditions that can affect the
behavior of the apparatus, the solution used must always be verified behavior of the apparatus, the solution used must always be verified

Notes

Draw-out version
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\longrightarrow
\qquad \longrightarrow
\qquad
\qquad

[^0]: MOUNTING PRINCIPLE
 In XL^{3}, the DMX^{3} devices and the associated busbars are arranged according to an identical principle for all power ratings, that is, the possibility of mounting three busbars and two devices per enclosure. The installation height of DMX ${ }^{3}$ units is always 600 mm whatever the type and size of the device. the busbars

